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Abstract  

The definition of measures of Information Quality (IQ) is an important part of Information Systems research and practice. A model is presented for organisational processes that classify a large number of customers into a relatively small number of partitions (or segments) using attributes in a database.  The model is built upon concepts from the IQ literature, but uses Information Theory to define appropriate measures.  These measures allow business analysts to assess different aspects of the processes, with a view to understanding the impact of IQ upon business performance.  Based upon this understanding and the organisational context, IQ treatment proposals may be constructed, refined and evaluated.  In addition to specifying the model and measures, an illustrative example is presented.
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1. INTRODUCTION

This paper introduces a formal model of information quality improvement for certain customer processes.  In particular, the model supports an information-theoretic analysis allowing a quantitative assessment of proposed information quality (IQ) improvements.  The resulting measures are useful for evaluating IQ treatment proposals.

There is widespread agreement that deficiencies with IQ impose significant costs on individual firms and the economy more generally (Wang and Strong 1996, Strong et al. 1997).  One practice-based report estimates these costs to the US economy at $US600 billion per annum (TDWI 2002).  With the growth in customer-centric data warehouses in the last ten years, significant attention has been paid to measurement of information quality (Naumann and Rolker 2000) and how these can be used for modeling improvements (Pipino et al. 2002). 

This model allows application of a well-established theory – in this case Information Theory – to define and answer some fundamental questions about IQ measurement.  These measures can be used to evaluate the performance of IQ improvements and hence guide practitioner decision-making.  

The analysis applies to customer databases: an organisation’s collection of facts about its (potential) customers. Demographic, psychographic and transactional data are typical.  The unit of analysis is the customer partitioning process: segmenting customers into a small number of sets for differentiated action.  This is an important use of customer information, particularly supporting Customer Relationship Management (CRM) activities.  For example, Meltzer (2002) identifies six key activities for CRM: Cross-sell, Up-sell, Retain, Acquire, Re-activate, and Experience.

The first five activities may be described as selecting a subset of the firm’s (potential) customers for special treatment, such as an offer or other message.  During this segmentation process, each customer is considered independently of the others.  A common decision-making entity uses facts about the customer to arrive at a decision (allocating the customer to a segment).  Applications include campaign management, fraud detection, credit scoring and loyalty programs. Variously known as “selecting”, “segmenting” or “targeting”, we use “partitioning” to describe this basic operation.

The rest of this paper is organised as follows.  Section 2 covers some previous literature on this topic, focusing on measures of IQ.  Section 3 provides the theoretical basis and overview of the proposed model as used for the description and assessment of customer partitioning processes (section 4). Next, section 5 introduces information-theoretic concepts and applies these to measure IQ for the customer partitioning process and its sub-processes. Section 6 extends the model to incorporate IQ treatments and introduces measures of improvement and evaluation criteria.  Finally, a numerical example of the concepts and measures is provided in Section 7.
2. Survey of the IQ Measurement Literature

A number of general methods for modelling IQ have been proposed (Ballou and Pazer 1985, Kahn et al 2002, Ballou et al 1998, Lee et al 2002).  These approaches all use a group of metrics or measurements to assess the quality of information along a number of different dimensions. While these approaches are useful for understanding quality in existing systems, they do not explicitly address the organisational value of proposed IQ treatments.  This is important because in many organisations IQ activities must compete for resources based upon an investment criterion (eg. Return on Investment or Net Present Value).

The IQ literature has identified this organisational need.  For example, Ballou and Tayi (1989) prescribed a method for periodic allocation of resources to a class of IQ proposals (maintenance of data assets). It assumes a budgetary approach (that is, a fixed budget for IQ to be shared among a set of proposals), rather than an investment approach (evaluation of proposals based upon expected value returned). It further assumes that the data managers have sought and won the largest budget they can justify to their organisation.  Based upon statistical sampling, a parameter estimation heuristic and an iterative integer program, the method arrives at an optimal dispersal of resources across proposals. 

The method requires data analysts to understand the appropriate level of data granularity (fields, attributes, records) for the analysis and the expected costs of errors in these data sets.  In general, the problem of estimating the costs of IQ defects is extremely complex.  Earlier work by Ballou and Pazer (1985) employs the differential calculus to estimate transformation functions that describe the impact of IQ defects on “down-stream” decision-making.  This functional approach is combined with a Data Flow Diagram method in Ballou et al (1998).  Gathering information on the parameters required for this method is likely to be an enormous undertaking.

More widely, there does not appear to be strong emphasis on value measurement: the focus is “fitness for purpose”, either as product specifications or consumer expectations (Kahn et al 2002). This latter view involves measurement of the subjective experiences of information consumers, typically by a Likert Scale (see Naumann and Rolker 2000 for an overview of different assessment methods). These ratings undergo transformations using weighting, sums and differences to derive metrics that allow comparison of quality levels over time (Parssian et al 1999).  In addition to the incommensurability with competing uses of organisational resources, these approaches are limited for planning purposes by the difficulties in forecasting consumers’ expected satisfaction after implementing an IQ treatment.

Most approaches make some use of objective measures of information quality dimensions (for example Shanks and Darke 1998; Ballou et al 1998; Motro and Rakov 1996).  However, most do not address directly the economic aspects: Wang (1996) and later Strong et al (1997) consider “Value-added” to be an attribute of the “Contextual” dimension, but provides little detail about how exactly this is defined and measured, or its role in organisational decision-making.  Some authors frame time, cost and quality as different dimensions for design trade-offs (Ballou et al 1998). The use of differential calculus and integer programming methods – and the restrictions this entails – may be too abstract to meet practitioner needs.  On the other hand, more simple heuristics such as weighting and averaging may lack theoretical rigor and consequently misrepresent the situation.

When making objective measures, the issue of appropriate units arises. Whether subjective or objective, IQ assessments employ unitless measures (Likert scales and percentages respectively) of dimensions such as completeness, accuracy, (Motro and Rakov 1996, Shanks and Darke 1998), currency (Ballou et al. 1998) and integrity (Motro and Rakov 1996).  It is not obvious that when one claims, say, 50% completeness for a database whether this means that all customers have 50% of their attributes present.  Similarly, it does not indicate how much the missing 50% impacts the organisation.  This may not be a problem if all attributes and entities carry equal importance; however, this is unlikely to be the case. 

As an illustration, consider the problem of “prior probabilities” when measuring accuracy.  Suppose that a database has a “fraud flag” that is set when the customer is suspected of committing fraud.  If you expect only 0.1% of customers to be fraudulent, and your database is 99.9% accurate, then it is possible to have flagged exactly the wrong 0.1% of customers - despite a seemingly high accuracy!  Lastly, not all IQ deficiencies are equal in impact.  In the fraud flag example, the cost of erroneously setting the flag on a bona fide customer is likely to be significantly less than overlooking a fraudulent customer.

Unbiased, practicable and theoretically sound objective measures of IQ linked to value would help researchers and practitioners understand the impact of IQ defects on processes that use the information.  This in turn would help manage IQ activities, including selection of proposals and benchmarking of implementations. 

3. basis of the customer information Quality Model

Using an economic approach (Lawrence 1999), we suppose that nature has a set of states to which the decision-maker (DM) assigns a probability distribution reflecting her knowledge of the world.  The DM may access an information source and receive a message that changes her probability distribution.  This is called statistical information. Should this change cause her to believe that a different course of action is preferable, it becomes pragmatic information.  That is, a change in her choice from a set of possible actions.  Value is realised when the informed decision has a better pay-off than the prior decision.  Statistical information is necessary but insufficient for pragmatic information, which is necessary but insufficient for value.

The underlying assumption from economic theory that the world can be modelled as a probability distribution over states motivates the selection of the state-based ontological framework for IQ proposed by Wand and Wang (1996).  They describe a model of an information system as a mapping from a real-world statespace to a representation in an information system.  This representation is accessed and interpreted by users.  They identify four IQ dimensions (complete, unambiguous, meaningful and correct), and possible deficiencies resulting from design or operation.  They use the concept of garbling to describe a mis-mapping between the real-world and corresponding representation states.  This framework does not directly address the impact of garbling on the use of information, that is, the pragmatic information.  Garbling and its impact on value are given a formal analysis in the information economics literature (for example, Marschak and Radner 1972).  In particular, Blackwell (1953) shows the necessary and sufficient conditions for one information source to be more informative than another; that is, all DMs satisfying certain technical rationality requirements will prefer the original source over the garbled one.

To support the distinction between statistical and pragmatic information, the model uses the semiotic framework developed for understanding IQ in datawarehouses (Shanks and Darke 1998). Under this framework, information quality goals are grouped into three abstract levels that build upon each other:

· Syntactics: concerned with form.  

· Semantics: concerned with meaning.

· Pragmatics: concerned with use.

The semantic level dimensions such as completeness and accuracy assess the mapping between the representation and the real world.  As such, this is the level of analysis described by Wand and Wang (1996).  By applying probability estimates to the real-world and representation states, we can apply the economic measures of statistical information (now “semantic information”).  As we will see later, this can be seen as a communication process between the real-world and the representation, with the information system as a channel and the real-world as the information source. Attributes of the customer are the messages.

By extension, it is reasonable to model the set of possible actions a DM could take as a statespace and assign probability measures of the DM’s beliefs about her final decision.  This allows us to model how information is used, that is, informs decisions.  This relates to the pragmatic semiotic level, assessed by usefulness and useability.  The relationship between measures based on pragmatic information (changes in actions) and value is discussed in Section 6.3 

While the model uses the semantic and pragmatic levels, it does not address the syntactic level.  This is because it is not required for an economic valuation (the semantic level subsumes the syntactic).  Also, the model does not directly analyse the decision making process: the evaluation and selection of actions based on representations of the real-world state.  The next section shows how semantic information (uncertainty about what we know) influences pragmatic information (uncertainty about what to do, or indecision) in the customer partitioning process.

4. Modelling the CRM process

Many key organisational processes can be considered as customer partitioning processes: for example direct marketing and campaign management (Chauchat et al 2001), fraud detection and intrusion monitoring, and loan approval and credit management (Vinciotti and Hand, 2003). These situations share a number of common features and are amenable to a similar analysis (see Figure 1). 

The customers are considered independently of each other (the order doesn’t matter). Each customer has a real-world state we ( W, where W is the set of all possible states a customer can be in.  We define the random variable W over W to represent our uncertainty about which state is the real-world state. Correspondingly, each customer has a representation state xf ( X, where X is the set of states that the system can represent.  The random variable X over X is similarly defined. 

In practice, the statespace X would be defined as the cross-product of a number of attribute dimensions such as name, date of birth, product membership and marketing cohort.  We write X = {A1 x A2 x … x AJ} for J mutually exclusive partitions, and |X| = M.  So, if A1 is the attribute “gender”, it will split the statespace X into two: “male” and “female”.  In general, each attribute splits X as many ways as there are defined values for that attribute.  We say a customer is fully-specified if we know xf with probability 1, but is partially-specified if we only know some of the attribute values.  In other words, a particular customer could be anywhere in the statespace.  As we find out successive attribute values, the search narrows.  Knowing xf is the finest level of granularity the system can express for that customer.


Figure 1: Model of Customer Partitioning Process, with sub-processes Communication, Decision and Action. 

The relationship between W and X is defined so that X is a direct and categorical message of W (Lawrence 1999): the number of states is equal, and at design time there is intended to be a one-to-one correspondence between them (Wand and Wang 1996).  During operation a state may be garbled for some customer: p(xi | wi) ( 1. We call such garbling at the semantic level (in the communication sub-process) errors.

At the pragmatic level we have the classification statespace Y with N alternative classes. In the decision sub-process the customer is assigned a class yi ( Y based on the message xf. We define another statespace Z with the same states as Y.  However, Z (the realisation) is the correct posterior classification for the customer: it’s the choice of class the DM would make with perfect information about the outcome, perhaps from hindsight.  Again, there is a direct and categorical relation between Y and Z.  Garbling of states at the pragmatic level (in the action sub-process) is called a mistake to distinguish it from errors.

The relation between X and Y is more complex: they have a different number of states (N ( M in general), and any conceivable decision process may be used to relate the two.  We require that the process is deterministic: that is, any two customers with the same representation x will also be mapped to the same classification y.  We do not require separability (Hand 1997) or domain completeness (Kononeko and Bratko 1991); that is, two customers with the same representation X may not share the same realisation Z.  The extent to which the correct decision Z is specified by knowledge of the true real-world state W is discussed in Section 5.4 as latent uncertainty to account for free will and the idiosyncrasies of human behaviour.

5. information quality Measures for partitioning PROCESSES

We begin by adopting a definition of uncertainty from Information Theory (Shannon and Weaver 1949), sometimes known as the Statistical Theory of Information.  Originally developed for the analysis of electrical communication systems, it has since been widely applied to economics, psychology, molecular biology, cognitive science, machine learning and other applied disciplines (Cover and Thomas 1991).  Our uncertainty or equivocation for any random variable X is given by:

H(X) = -E[log P(X)] = -( P(X) log P(X)

It has the effect of taking a probability distribution over a number of states and reducing it to a single number that expresses our average uncertainty.  It also has interpretations as a measure of complexity, surprise, variety, inequality and redundancy in different systems disciplines.  The use of the logarithm is motivated by noting that it is the only mathematical relation that satisfies the intuitive requirements for an information function (see any introductory text to communications theory or information economics, eg. Haykin 1988).  H(X) takes on a minimum of zero when p(xi)=1 and p(xj(j)=0 for all j.  It takes on a maximum of log N when all N states are equally likely.  In this paper, we follow the convention of using a logarithm base 2, so that the unit of the measure is bits
.  This allows the interpretation of H(X) as the minimum expected number of yes/no questions one would need to ask to identify a particular instance of X.

We now define information as the reduction in uncertainty.  For example, suppose that we have, a priori, a particular amount of uncertainty about X.  Then, upon receipt of a message Y we revise our probability distribution and thus reduce our uncertainty.  The amount of information about event X in event Y is called the mutual information:

I(X;Y) = H(X) – H(X|Y)

If I(X;Y) = 0, it implies that X and Y are completely uncorrelated and independent, that is, knowledge about Y tells us nothing about X.  Note that it is symmetric:

I(X;Y) = H(X) + H(Y) – H(X,Y) = H(Y) – H(Y|X) = I(Y;X)

Since entropy has a satisfying chain rule: H(X,Y) = H(X) + H(Y|X)

The maximum value for the mutual information occurs when either H(Y|X)=0 or H(X|Y)=0, so it is the smaller of H(Y) and H(X).  This approach to measuring information is now employed in the analysis of the communication, decision and action sub-processes.

5.1 Analysis of the Communication Sub-Process

This sub-process relates states of the real world W with those of the representation X.  We use the state transition approach of Wand and Wang (1996) but augment the transitions with probabilities (see Figure 2).  The resulting row-stochastic Markov matrix (with “garbling” on the off-diagonals) describes a memoryless noisy channel (Hakyin 1988).  Each element is the conditional probability P(X|W).


Figure 2: Equivalence of state transition and channel matrix characterisation for a four-state system.

The mutual information I(W;X) is a measure of semantic information as it tells us how much our prior uncertainty about the real world state is reduced by observing our representation X.  This analysis can be performed at an attribute level too (i.e. for a partially-specified customer), rather than over the entire statespace.

In order to estimate the conditional entropy H(W|X), it may be helpful to employ a form of Fano’s Inequality (Cover and Thomas 1991) which bounds this quantity using the probability of error Pe =  P(X (W).

H(Pe) + Pe log (M – 1) ( H(W|X)

By substitution, we can be specify a lower bound on I(W;X) ( H(W) – H(Pe) – Pe log (M – 1)

In this example, the real-world states w1 and w4 are garbled while w2 and w3 are always communicated without error.  If the states w1 and w4 never arise in nature, then the channel can be used without error.  In general, the mutual information I(W;X) will depend on the prior distribution of W.  Non-linear optimisation methods may be used to find the distribution of W that maximises the mutual information (Cover and Thomas 1991), and this value is called the channel capacity.

C = max W I(W;X)

Shannon and Weaver (1949) showed that it is not possible to send reliably through this channel more information than this bound (known as the Channel Coding Theorem). 

5.2 Analysis of the Decision Sub-Process

This sub-process relates states of the representation X with those of the classification space Y.  Since we have assumed a deterministic decision process, there is no uncertainty in Y once we know X, ie H(Y|X)=0.  Therefore, I(X;Y) = H(Y).  However, if we analyse a partial revelation of the state X (such as attribute Aj) we can measure how much knowledge of that attribute value reduces the DM’s uncertainty about her final action.  Since all uncertainty is removed by the time she knows the last attribute (the DM decides) we can also calculate the proportion of information about the DM’s action due to each attribute revelation. 

Note that since H(Y|X)=0, the elements of the transition matrix are either zero or one.  However, for the partially-specified situation in Figure 3 (we only know the value of attribute Aj) we do not yet have a definitive classification.

Figure 3: Effect of 3-value attribute Aj on a classification via a set of decision rules.

In this example, the revelation of attribute value a3 means that the DM will definitely decide on y2.  For the other attribute values, it’s not so clear cut: for large values of (1 and (2 they may not tell us anything about Y, while for small values they may largely specify the result of Y.  The informational relationship between the attribute and classification is related thus:

I(Aj;Y) = H(Y) – H(Y|Aj)

It is a measure of how “actionable” an attribute is as it tells us how much our prior uncertainty about what to do (indecision) is reduced by observing the attribute Aj.  It does not depend on W or Z (the real-world values) and so characterises the decision process.  The most influence that Aj can have on the classification Y is given by the channel capacity of the decision matrix.  It has been proposed in the data mining literature that the mutual information measure can be used to determine which attributes are most important for data mining problems (see  Yao et al. 1999 for a detailed discussion of the different proposals).  Also, the decision-theory community has used mutual information as a measure of sensitivity of decision variables to solutions (eg. Hazen and Felli 1991).

5.3 Analysis of the Action Sub-Process

This sub-process relates states of the classification Y with the “true” realisation Z.  In decision theory, this is often represented as a contingency table (or confusion matrix) showing P(Y,Z) rather than P(Z|Y), as in Figure 4.


Figure 4: Characterising the outcomes of the classification with contingencies and pay-offs.

The outcomes on the off-diagonal are mistakes, and attract costs.  These costs are reflected in a pay-off
 matrix as shown on the right.  We adopt the convention of using zeroes on the main diagonal (no cost is borne by a correct guess).  The ultimate measure of performance is the cost of the classification process (Hand 1997), calculated by pair-wise multiplication of elements from these matrices.  For this two-state example, the total cost is

Cost = (1 (1 + (z1 - y1  + (1) (2
Absent a good cost function, some researchers compare classifiers via error-type measures such as specificity, sensitivity and recall (Hand 1997) that relate “true positives” and “false negatives”.  These approaches are generalised by the ROC (receiver operating characteristic) analysis approach (Provost et al. 1998). This includes as a special case the lift measure, often used in customer management and direct marketing (Piatetsky-Shapiro and Steingold 2000).

The machine learning community uses the measure I(Y;Z) as a measure of classifier performance (Kononeko and Bratko 1991) where it is known as the average information score.  They argue that this is a superior measure of performance than error rate or lift as it takes into account skewed classes and costs.  It is also more useful than the ROC analyses as it generalises naturally beyond two states.  The interpretation is that H(Z) is the prior uncertainty in the correct classification, and H(Z|Y) is the residual uncertainty after the decision is made.  If Y was a perfect indicator of Z, then H(Z|Y)=0 and I(Y;Z) takes on a maximum of H(Z).

5.4 Information Performance Measures for CRM Processes

The average information score is used to construct the relative information score, normalised as a percentage of total information required (Kononeko and Bratko 1991).

R = I(Z;Y) / H(Z)

We define the overall effectiveness of the classification process as 

EC  = I(Z;Y) / I(Z;W)

Note that since I(Z;W) = H(Z) – H(Z|W) ( H(Z), EC ( R.  Also, EC ( 1 since H(Z|W) ( H(Z|Y), with equality if and only if H(Z|W) = H(Z|Y). Even with perfect knowledge of the real-world state, there will be some latent uncertainty about the correct classification due to free will.  We cannot expect the classifier to out-perform the situation of direct access to the real-world state, so it is normalised appropriately.  This is justified by the Data Processing Theorem from Information Theory (Cover and Thomas 1991).  (Effectively, each step in the process removes information: we cannot extract more information about the true outcome by inspecting a database than we can from the real-world that informed it.)  Without this latent uncertainty it reverts to the relative information score.  That is, when H(Z|Y) = 0, EC = R.

This still measures the overall performance of the classifier, including the decision-process and its flaws.  However, the improving the decision-process is out of scope for IQ analyses: we cannot change the business rules. We require a measure of pragmatic IQ effectiveness that takes into account flaws in the decision-process, as well as latent uncertainty.  To define this, consider the alternative realisation statespace Y* defined so that it always equals the classification that the decision-process would have made with perfect information about the real-world, W.

Y* = D(W), where D(() is an arbitrary decision function mapping M states to N.

In this way the communication sub-process can “succeed” (Y* = Y) even when the decision sub-process fails (Y* ( Z). The “correct” classification is no longer the classification made with hindsight (Z), but through application of the given decision sub-process to the real-world state W, instead of X.  So the information delivery is deemed successful when the (noisy) representation X still results in the same decision as that made with the (clean) real-world W.  Using this more achievable target, we redefine the effectiveness measure by substituting in Y* for Z and noting that I(Y*|W)=0.  The normalised measures are summarised here and their usage discussed in 6.4.

Classifier Effectiveness EC = I(Z;Y) / I(Z;W)  Measures overall classifier performance against the real-world

Pragmatic IQ Effectiveness EP = I(Y*;Y) / H(Y*)  Measures performance (regardless of decision-making effect)

Semantic IQ Effectiveness ES = I(W;X) / H(W)  Measures semantic (representation)  IQ relative to real-world

Actionability ( = I(Y;A) / H(Y)  Measures extent to which an attribute influences decisions

6. Modelling IQ Improvements for customer Processes

An Information Quality improvement proposal is a modelled as a treatment that applies to a sub-set of customers and (possibly) changes a customer’s state xf (see Figure 5). A treatment is any action that we expect to revise the representation of the customer’s real-world state, xf to xg.  It includes data cleansing, validation and enhancement.  It does not include refinement of the decision sub-process or business rules used for the partition.

We model a treatment as a transformation T that maps the current representation X to the revised representation X’ (see Figure 5).  The mapping is probabilistic and depends on the characteristics of the treatment, the real-world and the information system. The intent of a treatment is to remove errors in the semantic level (perhaps via the syntactic level), with the expectation of reducing mistakes (pragmatic information), and ultimately to create value.  It is essentially an attempt to produce a less-garbled message (attribute) from the real-world via an alternative communication sub-process C’.

6.1 Analysis of Disagreements

When the initial and treated representations are different (the customer record has been modified by the treatment), we have a disagreement.  This notion with is formalised with a disagreement matrix (S that directly compares the initial state X with the treated state X. (S is an M x M matrix with each element (f,g) given by

P(X=f, X’=g)

If f=g then the treated value X’ agrees with the initial value X.  The proportion of disagreements arising from the treatment is given by

DS = 1 - (f P(X=f, X’=f)

Where the treatment T is the conditional probability matrix of P(X’|X), the disagreement matrix (S is the joint probability distribution P(X’, X) = P(X’|X) * P(X).


Figure 5: Extension of the model for customer partitioning processes to include an IQ treatment proposal.

6.2 Analysis of Disputes

The disagreement matrix applies at the semantic level.  We can extend the previous analysis to the pragmatic level by defining a dispute as a difference in initial classification Y and “revised” classification Y’.  This gives rise to the disputation matrix (P with each element (i,j) equal to P(Y=i, Y’=j).  The proportion of customers that will have a different classification as a result of the treatment T is

DP = 1 - (i P(Y=i, Y’=i)

DP ( DS since each dispute must have at least one disagreement, but each disagreement can only contribute to one dispute.  We define the treatment efficiency (T = DP / DS, ranging from zero to one.  It only attains unity when each disagreement results in a unique dispute.  In general, it is a measure of the number of semantic changes per pragmatic change.

A dispute is preferred (that is, Y’ is better than Y) if and only if the expected cost of using the revised classification Y’ is lower than using Y.  We formalise this criterion as:

V(i, j) = ((i, k) - ((j, k) > 0

where i is initial classification of Y, j is the revised classification of Y’, k is the true classification and ((a, b) is the pay-off from classifying the instance as a when it is really b.  By definition of the pay-off matrix, ((a, a)=0.  In effect, the cost of the initial mistake must be greater than the revised mistake.  Hence, a treatment will be preferred even if it does not revise the classification to the correct one but merely reduces the cost of the mistake.

For each of the N x N possible dispute types (i, j) arising from a treatment, we can calculate V(i, j) separately:

V(i, j) = ([((i, k) - ((j, k)] P(Y*=k | i, j)

where we have used Y* instead of Z (see Section 5.4).  In this way, we can identify those disputes where we expect the treatment to perform well.  Only for the preferred disputes (i, j) where V(i, j) > 0 should the revised action j be taken.  If V(i, j) ( 0 for all disputes then the treatment should not proceed.  It seems reasonable that some treatments will be particularly good in certain areas and particularly bad in others.   By breaking down the outcomes in this way, we can potentially combine treatments to optimise the overall performance of the partitioning process.

6.3 Value considerations

Arriving at the pay-off matrix required for this analysis is not trivial.  Ideally, it should reflect the Net Present Value to the organisation of the different outcomes.  This requires a thorough understanding of the organisational cost structure, including the cost of capital, an appropriate discount rate to take into account the time value of money to the organisation, and the attitude to risk (risk-averse or risk-neutral). Many practitioners in the CRM area suggest a “Customer Lifetime Value” analysis (eg. Meltzer 2002).  This approach requires modeling of the future costs and benefits associated with a customer’s tenure with the firm.  Additionally, these pay-offs should include the costs of undertaking the IQ improvement activity as well.  We would expect that in practice such modeling would be undertaken by the business unit responsible for customer management, while costing of IQ proposals would reside with the business unit responsible for data management.

An alternative approach is to use the entropy of the class distribution as a proxy measure for value.  There is some empirical evidence to support this notion (Vetschera 2000) and it has intuitive appeal: organisations would only bother splitting a customer base into segments if it was too costly to treat them all the same.  It must, presumably, be very valuable to identify a very small segment (say, 0.1% of the customers) and treat them differently since the pay-off from identifying those one in a thousand customers would have to “pay” for the other 999 to be subjected to the partitioning process.  In fact, entropy and measures derived from it are often used as a “splitting criterion” in formal decision analyses (Shih 1999).

6.4 Evaluation criteria

The model outlined in sections 5 and 6, along with resulting metrics, may be useful when evaluating information quality improvement proposals.  Assume that an organisation has a number of customer partitioning processes, each accessing a shared customer database composed of a number of attributes, with each attribute taking a number of possible values.  We present here some questions about IQ and how the metrics defined may be helpful for answering them.

“How much information does each process require?”  The entropy of the correct classification H(Z) is a measure o this.  Ceteris paribus (all else being equal), processes with larger information requirements have higher priority.

“Which process outcomes have the most impact?”  For each process, the pay-offs in ( can provide this; alternatively, max k H(Z=k) may be a useful proxy. Ceteris paribus, outcomes with larger impact have higher priority.

“How effective is each process at partitioning the customers?”  This is given by the effectiveness of the partitioning process, EC = I(Z;Y) / I(Z;W). Ceteris paribus, processes with lower effectiveness have higher priority.

“To what extent do flaws in the decision process obviate the need for improved IQ?” We can use the pragmatic IQ effectiveness EP = I(Y*;Y) / H(Y*).  If EC is small but EP is already large then we would not expect improvements in IQ to have much effect on the overall performance.

“Which attributes are most influential on decision-making?”  Ranking each attribute by calculating its actionability ( = I(Y;A) / H(Y) will answer this. Ceteris paribus, attributes with large actionability have higher priority.

“To what extent does the representation of the customer reflect the real world?”  The semantic IQ effectiveness ES = I(W;X) / H(W) measures this.  We can assess this on a per attribute basis by using the partial specification A instead of X, and A* (defined as the real-world value of the attribute) instead of W. Ceteris paribus, attributes with a low ES stand to gain the most and thus have higher priority.

Once some concrete IQ proposals have been constructed, it is reasonable to undertake some sampling exercises to determine their value contribution.  This can be done by estimating the disagreement matrix (S and the disputation matrix (P. Then, V(i, j) is estimated from the pay-off matrix ( and P(Y*=k | Y=i, Y’=j).  Based on this preference function, those disputes that are value positive arising from each treatment can be identified.  This is demonstrated in Section 7 with a numerical example.

7. A Numerical Example of IQ Improvement Evaluation

Suppose a retail bank has used the criteria spelt out in section 6.4 to develop an IQ treatment proposal.  They have identified their mortgage approval process as the most likely to benefit from improvement.  This process partitions each customer into one of three categories: “Refuse”, “Refer” and “Accept”.  They have estimated their contingency table and pay-off matrix as in Figure 6.

We can see that the prior probabilities Z = {0.6, 0.1, 0.3} and the process partitions the customers into Y = {0.5, 0.1, 0.4}.  From this, analysts determine H(Z) = 1.3 bits, H(Y) = 1.4 bits and H(Y, Z) = 2.1 bits.  The total cost of the process is 2.9 units.  The most costly mistake is when they “accept” a customer they should “refuse”; however this only happens 10% of the time.  The opposite mistake (“refuse” instead of “accept”) costs nearly as much but occurs twice as often.


Figure 6: Contingency table and pay-off matrix for numerical example

Suppose further they have identified that the attribute “Marital Status” is both highly actionable (ie a key driver of the decision process) but has low semantic IQ effectiveness (differs from the real-world value).  This attribute takes on three possible values, “Single”, “Married” and “Divorced”.   By purchasing a sample data set from a marketing information provider and matching it against their customer records they derive the disagreement and disputation matrices presented in Figure 7.


Figure 7: Disagreement and disputation matrices for numerical example

Note that, as expected, the proportion of disputes (DP=15%) is less than the proportion of disagreements (DS=20%), giving a treatment efficiency (T=75%.  Also, the sum of the rows in (P is the same as the sum of the rows in the contingency table.  The analysts may now compare the four possible disputes types against the target classification Y* to estimate P(Y*=k | Y=i, Y’=j).  The results are summarised in Figure 8, where the quantity in parenthesis is the value V(i, j).


Figure 8: Value of disputes for numerical example

This treatment only provides positive expected value in the case of a (1,3) or (3,2) dispute (ie “refuse” instead of “accept” and “accept” instead of “refer”, respectively).  The expected value of the treatment is 

VT = –0.1*0.02 + 1.0*0.03 – 0.6*0.05 + 0.8*0.05 = +0.13 units per customer.  

But, by only accepting the revised classifications in the disputes where we expect positive value, the expected value increases to 

V*T = 1.0*0.03 + 0.8*0.05 = +0.43 units per customer, an increase of 0.30 units.   

8. Conclusion

IQ measurement is an important part of information systems research and practice.  Good measures support analysts, managers and research in the construction, testing and evaluation of IQ proposals to improve current performance.  An information-theoretic model of customer partitioning processes allows stakeholders to understand the impact of IQ in a key area of information usage – information for organisational processes that segment or classify customers. The model helps stakeholders to understand the information requirements of different processes; how well these requirements are being met by the information system; which attributes are significant drivers of decisions; and the extent to which particular attributes diverge from their intended real-world values.  Specifically, the following measures are introduced and defined: overall classification process effectiveness, pragmatic IQ effectiveness, semantic IQ effectiveness, actionability, latent uncertainty and treatment efficiency.

With this understanding, and knowledge of the structure of costs of mistakes to the organisation, particular proposals can be evaluated and refined through sampling an alternative information source to ascertain the extent to which its attribute values differ from those of the original.  By re-applying the decision process to these new values, the proportion of customers with a different classification is estimated.  Based on the new classifications, the value of the treatment is calculated as the expected reduction in the cost of process mistakes.  As shown with the contrived numerical example, the treatment may be refined so that it is only employed for cases where it is expected to contribute positive value.

This model and its measures are being validated through a two-stage process.  First, a series of “synthetic field trials” is being conducted via simulation of IQ deficiencies and treatments in public-domain customer datasets pertaining to credit scoring and direct marketing.  The goal is to test the hypotheses in Section 6.4.  Second, the results from this study will be analysed and another contrived IQ treatment scenario presented to a focus group of business managers.  The goal is to assess the extent to which this model can be used to construct a credible IQ treatment business case for use by practitioners to help them understand their investments in information quality.
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� Note that the use of “bits” as a measure of information is not to be confused with file size or other measures of sources that involve counting symbols. 


� These are actually penalties, since a positive number indicates a cost.  However, we use “pay-off” for consistency with the literature.





